US009162145B2

a2z United States Patent (10) Patent No.: US 9,162,145 B2
Ogrin et al. 45) Date of Patent: Oct. 20, 2015
(54) UNIFIED GAME SCRIPTING LANGUAGE 2007/0150902 Al 6/2007 Meyer
WITH MULTI-PLATFORM INTERPRETER 2007/0155494 Al* 7/2007 Wellsetal. ...cccocconns. 463/35
2008/0127127 Al* 5/2008 Chitgupakar et al. 717/137
. . 2008/0127200 Al 5/2008 Richards
(75) Inventors: Robert Todd Ogrin, Saugus, CA (US); 2008/0300046 A1* 12/2008 Gagneretal.co.ccc...... 463/25
Jackson Dunstan, Sherman Oaks, CA 2010/0124992 Al 5/2010 Park
(US); John Crocker, Valencia, CA (US) 2010/0162126 Al* 6/2010 Donaldsonetal. 715/738
(73) Assignee: Disney Enterprises, Inc., Burbank, CA OTHER PUBLICATIONS
(Us) Carter, Christopher: “The Development of a Networking Middleware
. Notice: Subject disclai the t £ thi and On-Line Deployment Mechanism for Java Based Games” A
() otice: ubjec . O any dls(ci alme(li,. € dermdo S thesis submitted in partial fulfillment of the requirements of
patent is extended or adjusted under 35 Liverpool John Moores University for the degree of Masters in Com-
U.S.C. 154(b) by 286 days. puter Games Technology, Dec. 2008, 272 Pgs.
(21) Appl. No.: 13/492,536 * cited by examiner
(22) Filed: Jun. 8,2012 Primary Examiner — Paul A D’ Agostino
(65) Prior Publication Data Assistant Examiner — Brar}don Gray. . o
(74) Attorney, Agent, or Firm — Farjami & Farjami LLP
US 2013/0331189 Al Dec. 12,2013
51y Tnt.Cl (57) ABSTRACT
An6§ - 1 3/12 (2006.01) A method is provided for a unified game scripting language
A63F 13/30 (201 4'01) with a multi-platform interpreter. By providing a script editor
A63F 13/40 (201 4' 01) that creates a unified game logic script, and by processing the
(52) US.Cl ’ unified game logic script through platform conversion mod-
i) ules, game designers can easily specify game logic without
CPC v A63F 13/12 (2013.01); A6(321(‘;'1133(/)11g coding for a specific platform or making a distinction
. . . ’ between server and client. As only a single unified game logic
(58) Field of Classification Search /) ’ script needs to be maintained, consistency errors from manu-
USPC T T 463/25, 4Q, 42, 705/1 ally maintaining parallel and mirrored code bases is com-
See application file for complete search history. pletely eliminated. Moreover, game designers are freed from
. having to manually weigh the considerations of client side
(6 References Cited versus server side, low end hardware versus high end hard-
U.S. PATENT DOCUMENTS ware, bandwidth lirpited networks versus bandwidth unlim-
ited networks, specific hardware architectures, specific pro-
6,012,984 A 1/2000 Roseman gramming languages, and other technical details. Since
6,884,172 Bl | 4/2005 Lloyd platforms are defined by sets of rules, support for additional
;’255;(5)’;25 E% N 2;3883 gﬁﬁ}gggiian etal. ... 7;;;‘3/% platforms is readily implemented by creating an associated
2003/0177187 Al 9/2003 Levine platform conversion module.
2004/0193441 ALl™* 9/2004 Altiericcccoevvvenvreeenenn. 705/1
2004/0237120 A1l 11/2004 Lewin 18 Claims, 4 Drawing Sheets

Workstation 150

| Processor 152

Script Editor 155 ‘

Memory 154

Unified Game Platform Conversion Interpreted
Logic Script 156 Module 158a Code 118a
Interpreter Platform Conversion Interpreted
Application 157 Module 158b Code 118b
Ptatform Conversion Interpreted

Module 158¢c Code 128a

y

y

| Display 140c I

U.S. Patent Oct. 20, 2015 Sheet 1 of 4 US 9,162,145 B2

Fig. 1A /“"’

Display 140a

Speaker 145a I
Client 110a Client 110b
Processor 112a \ | Processor 112b W
Memory 114a Memory 114b
Game Client Game Client
Application 116a Application 116b
Logic Code Logic Code
118a 118b

| Display 140b |

<——> | Speaker 145b |

| Motor 147 |

Server 120a |

Processor 122a

Memory 124a ®

a—» (Game Database 160

Game Server
Application 126a

Player Data 162

Logic Code
128a Game Instance
Data 164

——— O~

U.S. Patent Oct. 20, 2015 Sheet 2 of 4 US 9,162,145 B2

Fig. 1B

Workstation 150
Processor 152

Memory 154

Script Editor 155
Unified Game Platform Conversion Interpreted
Logic Script 156 Module 158a Code 118a
Interpreter Platform Conversion Interpreted
Application 157 Module 158b Code 118b
Platform Conversion Interpreted
Module 158¢ Code 128a

————

Display 140c I

U.S. Patent

Fig. 2

Oct. 20, 2015

Sheet 3 of 4

Unified Game Logic
Script 256

If a player car
overlaps position (X,
Y, Z), then trigger
explosion of land
mine object #12345

US 9,162,145 B2

i

N

Interpreted Code
218a

If this player car
overlaps position (X,
Y, Z), then:

1) Render 3D
explosion of land
mine object #12345
on display

2) Use 3D physics
engine to bounce this
player car

3) Play explosion
sound effect

4) Send notification to
server on next
synchronization

Interpreted Code
218b

If this player car
overlaps position (X,
Y, Z), then:

1) Display pre-
rendered 2D
explosion of land
mine object #12345
on display

2) Use 2D physics
engine fo bounce this
player car

3) Play explosion
sound effect and
engage phone

vibration function

4) Send notification to
server on next
synchronization

Interpreted Code
228a

If explosion
notification received
from a client, then:

1) Remove land mine
object #12345 from
game instance

2} Recerd damage to
the player vehicle

3) Update player data
database

4) Send explosion
notifications to other
clients on next
synchronization

U.S. Patent Oct. 20, 2015 Sheet 4 of 4 US 9,162,145 B2

Fig. 3 /‘“’0

Present an editing interface for creating a

unified game logic script 310

Convert the unified game logic script into a
plurality of interpreted code sets using a 320
plurality of platform conversion modules

Embed the plurality of interpreted code sets
into a plurality of game code applications for 330
a respective plurality of platforms

US 9,162,145 B2

1
UNIFIED GAME SCRIPTING LANGUAGE
WITH MULTI-PLATFORM INTERPRETER

BACKGROUND

In client-server environments such as those for supporting
multiplayer online videogames, the server and client archi-
tectures may vary significantly. Conventionally, separate
code bases may be maintained in parallel for each of the
architectures, requiring mirrored updates to fix bugs or add
new features.

SUMMARY

The present disclosure is directed to a unified game script-
ing language with a multi-platform interpreter, substantially
as shown in and/or described in connection with at least one
of the figures, as set forth more completely in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A presents an exemplary diagram of a system pro-
viding a networked multi-platform game;

FIG. 1B presents an exemplary diagram of a computing
device providing a unified game scripting language editor
with a multi-platform interpreter;

FIG. 2 presents an exemplary diagram of interpreted multi-
platform game scripts from a unified game logic script;

FIG. 3 presents an exemplary flowchart illustrating a
method by which a computing device may provide a unified
game scripting language editor with a multi-platform inter-
preter.

DETAILED DESCRIPTION

The following description contains specific information
pertaining to implementations in the present disclosure. One
skilled in the art will recognize that the present disclosure
may be implemented in a manner different from that specifi-
cally discussed herein. The drawings in the present applica-
tion and their accompanying detailed description are directed
to merely exemplary implementations. Unless noted other-
wise, like or corresponding elements among the figures may
be indicated by like or corresponding reference numerals.
Moreover, the drawings and illustrations in the present appli-
cation are generally not to scale, and are not intended to
correspond to actual relative dimensions.

FIG. 1A presents an exemplary diagram of a system pro-
viding a networked multi-platform game. Diagram 100 of
FIG. 1 includes client 110aq, client 110, server 120a, network
135, display 140q, speaker 145a, and game database 160.
Client 110qa includes processor 112a and memory 114a.
Memory 114a includes game client application 116a and
logic code 118a. Client 1105 includes processor 1125,
memory 1145, display 1405, speaker 1455, and motor 147.
Memory 1145 includes game client application 1165 and
logic code 1185. Server 120a includes processor 122a and
memory 124a. Memory 124q includes game server applica-
tion 1264 and logic code 128a. Game database 160 includes
player data 162 and game instance data 164.

Diagram 100 illustrates a simplified topology for an exem-
plary networked multi-platform videogame. Accordingly,
only two clients 110a-1105 and one server 120qa are shown.
However, alternative implementations may support a much
larger number of clients and may provide multiple servers for
load balancing and/or reduced latency. Clients 110a-1105
and server 120a may be any computing device, such as a

10

15

20

25

30

35

40

45

50

55

60

65

2

desktop computer, laptop computer, tablet, game console, or
another device. More specifically, client 110a may be a desk-
top computer, client 110 may be a mobile phone, and server
120a may be a rack-mounted server. Network 135 may be a
public network such as the Internet, and may provide data
links between clients 110a-1105 and server 120a.

Game database 160 contains player data 162, which may
include user profiles, avatars, statistics, customizations,
friend lists, and other personal data. Game database 160 also
contains game instance data 164, which may contain data for
any in-progress multi-player game sessions including player
positioning, virtual environments, object placement, player
status, rankings, and other data. Game server application
126a may interface with game database 160 to access and
modify player data 162 and game instance data 164.

In a multi-player online game, it is desirable to maintain a
high level of state synchronization between clients 110a-
11054 so that all users can experience a coherent virtual envi-
ronment, which is visually depicted on displays 140a-1405.
To provide this level of synchronization, clients 110a-1105
may send requests to server 120aq to finally arbitrate any game
logic affecting multiple clients. Thus, game client applica-
tions 116a-1165 may send requests to game server applica-
tion 126a for evaluating multi-player game logic. However,
since communications over network 135 may be subject to
some unavoidable latency, the total time for receiving a
response from server 120a may be significant, resulting in
undesirable lag between user actions and the expected
responses on displays 140a-1404.

To reduce such latency, each client may instead indepen-
dently evaluate multi-player game logic using estimation and
adaptive predictive algorithms. Thus, logic code 118a and
1186 may independently resolve multi-player logic accord-
ing to best estimates using only locally available data. Client
110a and 110 can then periodically synchronize with server
120a over network 135 to correct any potential deviations
from logic code 1284, which can more accurately resolve
multi-player logic using remotely retrieved data.

In a conventional development workflow, logic code 118a,
1184, and 128q are developed independently and in parallel.
When the game application is multi-platform, separate code
bases must be maintained for each supported platform, which
may include several different variations of videogame con-
soles, desktop PCs, mobile phones, and other devices. More-
over, server architectures may also vary as well, as servers
may be provided by outside sources or selected based on free
computing capacity rather than a specific preferred architec-
ture. When changes to game logic are necessary, mirrored
changes to the code bases for all architectures are necessary,
requiring developers to learn multiple environments and
reducing the ability of designers to make significant changes.
This conventional development workflow tends to introduce
consistency errors and makes code maintenance difficult,
compromising overall software quality.

Accordingly, FIG. 1B presents an exemplary diagram of a
computing device providing a unified game scripting lan-
guage editor with a multi-platform interpreter. FIG. 15
includes display 140c¢ and workstation 150. Workstation 150
includes processor 152 and memory 154. Memory 154
includes script editor 155, unified game logic script 156,
interpreter application 157, platform conversion module
158a, 1585, and 158¢, and interpreted code 1184, 1185, and
118c.

Script editor 155 may present a text based or graphical user
interface (GUI) on display 140¢, allowing game designers to
script game logic in an abstracted, high-level manner.
Accordingly, the user of script editor 155 is not required to

US 9,162,145 B2

3

understand all the different target platforms of a multi-plat-
form development project, but only the intended logic flow of
the game itself. The output of script editor 155 is unified game
logic script 156, which specifies high level game logic with-
out platform implementation details.

After unified game logic script 156 is completed, platform
conversion modules may be created for interpreter applica-
tion 157 to interpret unified game logic script 156 for each
target platform. For example, continuing with the prior
example in FIG. 1A, platform conversion module 158a may
target a desktop computer by generating ActionScript for a
Flash client, platform conversion module 1585 may target a
mobile phone by generating a native binary for a system-on-
chip architecture, and platform conversion module 158¢ may
target a server by generating object code for a Linux environ-
ment. Each platform conversion module may optimize the
final interpreted code by adapting to specific hardware
resources available to the target platform, by adjusting work-
loads based on estimated resource availability, by removing
unnecessary or unsuitable features, and by providing various
other customizations.

Thus, after interpreting unified game logic script 156
through each platform conversion module, interpreted code
118a, 1185, and 1284 may be generated, corresponding to
logic code 118a, 1185, and 1285 respectively in FIG. 1A.
Accordingly, logic code 118a, 11854, and 1285 can be auto-
matically generated from unified game logic script 156,
thereby avoiding the necessity of manually maintaining sepa-
rate individual code bases as with conventional approaches.

Next, FIG. 2 presents an exemplary diagram of interpreted
multi-platform game scripts from a unified game logic script.
FIG. 2 includes unified game logic script 256, which is inter-
preted into interpreted code 218a, 2185, and 228a. With
respect to FIG. 2, unified game logic script 256 may corre-
spond to unified game logic script 156 from FIG. 1B, and
interpreted code 218a, 2185, and 228a may correspond to
interpreted code 118a, 1185, and 1284 from FIG. 1B, respec-
tively.

As shown in unified game logic script 256, the following
high-level script command is specified:

“If a player car overlaps position (X, Y, Z), then trigger

explosion of land mine object #12345”
As previously discussed, to reduce latency, each client may
independently execute game logic scripts in parallel, periodi-
cally synchronizing with a server. By using a process similar
to that described above in FIG. 1B, unified game logic script
256 may be interpreted using various platform conversion
modules into interpreted code 218a, 2185, and 228a.

Interpreted code 218a is targeted towards a desktop com-
puter system, or client 110« in FIG. 1A. Accordingly, as
shown in FIG. 2, if the player car of client 110a overlaps
position (X, Y, Z), then the following four steps are to be
executed by processor 1124 of client 110a:

1) Render 3D explosion of land mine object #12345 on
display

2) Use 3D physics engine to bounce this player car

3) Play explosion sound effect

4) Send notification to server on next synchronization
Since client 110q is a desktop computer, it may be capable of
real-time 3D graphics rendering. Accordingly, at step 1 of
interpreted code 2184, a 3D explosion is rendered of land
mine object #12345 on display 140a. Similarly, real-time
physics may also be readily achieved on a desktop computer,
and thus step 2 of interpreted code 218a uses 3D physics to
realistically bounce the player car of client 110q. Since audio
capability may be available, sound effects may be played
through speaker 145a in step 3 of interpreted code 218a. To

25

40

45

55

4

have the server and other clients synchronize with the locally
triggered explosion event, a notification may be sent to server
120a in step 4 of interpreted code 218a. The next synchroni-
zation may be queued using a periodic or adaptive update
schedule or triggered immediately on-demand.

Interpreted code 2185 is targeted towards a mobile phone,
orclient 1106 in FIG. 1A. Accordingly, as shown in FIG. 2, if
the player car of client 11011 overlaps position (X, Y, Z), then
the following four steps are to be executed by processor 1125
of client 1105:

1) Display pre-rendered 2D explosion of land mine object
#12345 on display

2) Use 2D physics engine to bounce this player car

3) Play explosion sound effect and engage phone vibration
function

4) Send notification to server on next synchronization
Since client 1105 is a mobile phone, it may not be capable of
advanced 3D graphics. Accordingly, at step 1 of interpreted
code 2185, a pre-rendered 2D explosion is shown for land
mine object #12345 on display 1405. Similarly, since com-
plex physics may be impossible on the hardware specifica-
tions of client 11056, a simple 2D physics engine may be
utilized at step 2 of interpreted code 2185 to bounce the player
car of client 1105. Since audio capability may be available,
sound effects may be played through speaker 1455 in step 3 of
interpreted code 218b. Moreover, since client 1105 also
includes motor 147, a phone vibration function may also be
triggered using motor 147 to additionally provide force feed-
back. At step 4 of interpreted code 2184, a notification may be
sent to server 1204, in amanner similarto step 4 of interpreted
code 218a. However, to account for mobile broadband data
caps and connection speeds, notification updates may be less
frequent for interpreted code 2185 compared to interpreted
code 218a, which may have access to high speed wired broad-
band without data caps.

Interpreted code 228a is targeted towards a server, or server
120a in FIG. 1A. Accordingly, as shown in FIG. 2, if an
explosion notification is received from any client, then the
following four steps are to be executed by processor 122a of
server 120a:

1) Remove land mine object #12345 from game instance

2) Record damage to the player vehicle

3) Update player data database

4) Send notifications to other clients on next synchroniza-
tion
Since server 120a does not need to provide visual or audio
feedback for a user, rendering of graphics and sound output
may be omitted. Accordingly, interpreted code 228a focuses
on bookkeeping duties such as updating records and client
synchronization. At step 1 of interpreted code 228a, land
mine object #12345 is removed from the game instance.
Thus, game instance data 164 in game database 160 may be
updated to reflect that land mine object #12345 has already
detonated and should no longer exist in the present game
instance. At step 2 of interpreted code 228a, damage is
recorded to the player vehicle. Thus, processor 122a may
calculate the damage based on the positioning, speed, and
other properties of the player vehicle, updating game instance
data 164 as necessary. At step 3 of interpreted code 228a,
player data 162 is updated, for example by keeping track of
the number of land mines detonated by each player car for
ranking purposes. At step 4 of interpreted code 228a, the
explosion notification is sent to the remaining other clients on
the next synchronization. For example, if the explosion noti-
fication was received from client 1104, then the explosion
notification may be sent to client 1105 so that client 1105 can
also render the explosion on display 14064.

US 9,162,145 B2

5

Accordingly, it can be seen that the platform conversion
modules can apply various rules to interpret unified game
logic script 256 into interpreted code 218a, 2185, and 228a.
One rule may specify the language of the interpreted code for
a specific hardware architecture, such as C, Java, Javascript,
Flash/Actionscript, or another language. Another rule may
specify the specific format of the interpreted code for the
hardware architectures, such as natively compiled machine
code, library files, intermediate byte code, text-based scripts,
source code, HTML, or another format. Another rule may
guide the division of client and server tasks, for example
where only clients render graphics and output sound and
where only servers handle updating of game instance data and
database records. Another rule may tailor the interpreted code
based on the performance of the hardware environment, pro-
viding higher quality visuals and sound for more powerful
hardware and less demanding assets for more limited hard-
ware. Yet another rule may adjust network usage based on
available network connectivity, for example by conserving
bandwidth for data capped mobile broadband connections.

Thus, by utilizing script editor 155 and interpreter appli-
cation 157 in FIG. 1B, game designers are enabled to specify
game logic without specifying the specific details of client
side versus server side, low end hardware versus high end
hardware, bandwidth limited networks versus bandwidth
unlimited networks, specific hardware architectures, specific
programming languages, and other technical details. Since
platforms are defined by sets of rules, support for additional
platforms is readily implemented by creating an associated
platform conversion module. Moreover, since only a single
unified game logic script 156 needs to be maintained, consis-
tency errors from manually maintaining parallel and mirrored
code bases is completely eliminated.

FIG. 3 presents an exemplary flowchart illustrating a
method by which a computing device may provide a unified
game scripting language editor with a multi-platform inter-
preter. Flowchart 300 begins when processor 152 of worksta-
tion 150 presents an editing interface for creating unified
game logic script 156 (block 310). For example, processor
152 may execute script editor 155, providing a text-based or
graphical user interface (GUI) on display 140c¢ to enable a
user to create or modify unified game logic script 156. Next,
processor 152 of workstation 150 converts unified game logic
script 156 into interpreted code 118a, 1185, and 1284 using
platform conversion modules 158a, 15485, and 158¢, respec-
tively (block 320). For example, processor 152 may execute
interpreter application 157 to perform the conversion, which
may carry out a process similar to that shown in FIG. 2 as
described above. Next, processor 152 of workstation 150
embeds interpreted code 118a as logic code 1184 of game
client application 1164, interpreted code 1185 as logic code
1184 of game client application 1165, and interpreted code
128a as logic code 128a of game server application 126a
(block 330). The completed system as shown in FIG. 1A is
then enabled to provide a multiplayer, multi-platform net-
worked game.

From the above description it is manifest that various tech-
niques can be used for implementing the concepts described
in the present application without departing from the scope of
those concepts. Moreover, while the concepts have been
described with specific reference to certain implementations,
a person of ordinary skill in the art would recognize that
changes can be made in form and detail without departing
from the spirit and the scope of those concepts. As such, the
described implementations are to be considered in all respects
as illustrative and not restrictive. It should also be understood
that the present application is not limited to the particular

10

20

25

40

45

50

65

6

implementations described herein, but many rearrangements,
modifications, and substitutions are possible without depart-
ing from the scope of the present disclosure.

What is claimed is:

1. A computing device for providing a unified game script-
ing language with a multi-platform interpreter, the computing
device comprising:

a processor configured to:

present an editing interface for creating a unified game
logic script for a game;

periodically receive synchronization data corresponding
to a synchronization event in the game;

convert the unified game logic script and the synchroni-
zation data into a plurality of interpreted code sets
using a plurality of platform conversion modules,
wherein each of the plurality of platform conversion
modules targets a specific platform from a respective
one of a plurality of platforms, wherein each of the
plurality of platform conversion modules adjusts net-
work usage for each respective one of the plurality of
interpreted code sets based on available network con-
nectivity of the respective one of the plurality of plat-
forms:

embed the plurality of interpreted code sets into a plu-
rality of game code applications for the respective one
of the plurality of platforms; and

send at least one of the plurality of game code applica-
tions for display by at least one client device.

2. The computing device of claim 1, wherein said editing
interface is a graphical user interface (GUI) shown on a dis-
play.

3. The computing device of claim 1, wherein said plurality
of platform conversion modules divide tasks according to the
plurality of platforms being server or client.

4. The computing device of claim 1, wherein said plurality
of platform conversion modules specifies a language of the
plurality of interpreted code sets based on hardware architec-
ture of the plurality of platforms.

5. The computing device of claim 1, wherein said plurality
of platform conversion modules specifies a format of the
plurality of interpreted code sets based on a hardware archi-
tecture of the plurality of platforms.

6. The computing device of claim 1, wherein said plurality
of platform conversion modules tailors the plurality of inter-
preted code sets based on a performance of a hardware archi-
tecture of the plurality of platforms.

7. A method for providing a unified game scripting lan-
guage with a multi-platform interpreter, the method compris-
ing:

presenting an editing interface for creating a unified game

logic script for a game;

periodically synchronizing data corresponding to a syn-

chronization event in the game;

converting the unified game logic script and the synchro-

nization data into a plurality of interpreted code sets
using a plurality of platform conversion modules,
wherein each of the plurality of platform conversion
modules targets a specific platform from a respective
one of a plurality of platforms, wherein each of the
plurality of platform conversion modules adjusts net-
work usage for each respective one of the plurality of
interpreted code sets based on available network con-
nectivity of the respective one of the plurality of plat-
forms;

embedding the plurality of interpreted code sets into a

plurality of game code applications for the respective
one of the plurality of platforms; and

US 9,162,145 B2

7

sending at least one of the plurality of game code applica-

tion for display on at least one client device.

8. The method of claim 7, wherein said editing interface is
a graphical user interface (GUI) shown on a display.

9. The method of claim 7, wherein said plurality of plat-
form conversion modules divide tasks according to the plu-
rality of platforms being server or client.

10. The method of claim 7, wherein said plurality of plat-
form conversion modules specifies a language of the plurality
of interpreted code sets based on hardware architecture of the
plurality of platforms.

11. The method of claim 7, wherein said plurality of plat-
form conversion modules specifies a format of the plurality of
interpreted code sets based on a hardware architecture of the
plurality of platforms.

12. The method of claim 7, wherein said plurality of plat-
form conversion modules tailors the plurality of interpreted
code sets based on a performance of a hardware architecture
of the plurality of platforms.

13. A computing device for receiving a unified game script-
ing language from a multi-platform interpreter, the comput-
ing device comprising:

a display; and

a processor configured to:

receive a unified game logic script for a game;

periodically receive synchronization data corresponding
to a synchronization event in the game;

convert the unified game logic script and the synchroni-
zation data into an interpreted code set using a plat-

10

15

20

25

8

form conversion module, wherein the platform con-
version module targets a platform of the computing
device, wherein the platform conversion module
adjusts network usage of the interpreted code set
based on available network connectivity of the plat-
form;

embed the interpreted code set into a game code appli-
cation for the computing device; and

render the game code application on the display.

14. The computing device of claim 13, wherein the proces-
sor is further configured to:

present an editing interface for creating a unified game

logic script for a game.

15. The computing device of claim 14, wherein the editing
interface is a graphical user interface (GUI) shown on the
display.

16. The computing device of claim 13, further comprising
a speaker, wherein the processor is configured to play sound
effects through the speaker.

17. The computing device of claim 13, wherein said plat-
form conversion module specifies a language of the inter-
preted code set based on hardware architecture of the com-
puting device.

18. The computing device of claim 13, wherein said plat-
form conversion module tailors the interpreted code set based
on a performance of a hardware architecture of the computer
device.

